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Abstract

The integrity of protective coatings is the subject of this investigation. Specifically, we concentrate on the case of
thermo-protective coatings, so-called thermal barrier coatings, aiming at development of methodology for service life
estimation of the coated components under thermal loading. At the current phase of the development, we establish rela-
tionships between various thermal loading patterns and failure driving parameters at different failure stages by deve-
loping an analytical-computational model of the process. The analysis addresses a typical failure development
pattern consisting of a system of multiple surface cracks leading to and branching along or near the interface between
the coating and the base material. The process is driven by thermal stresses. The developed model is applicable to thin
coatings and provides insight into the processes taking place during failure development and the effect of the details of
the applied thermal loading.

The methods developed in the course of this investigation may be applied to the analysis of environmental effects on
protective coatings and to investigations of failure development in layered composite systems under general loading
conditions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The efficiency of aircraft engines can be improved significantly by increasing the temperature in the com-
bustion chambers and the gas path temperatures in the high-pressure turbine sections. The temperatures in
these areas of today’s high thrust engines exceed the temperature capability of typical turbine metallic
alloys. To combat this situation, thermal barrier coatings (TBCs) have been developed for application to
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turbine and diesel engine components. A ceramic layer is deposited on a metallic alloy substrate. This com-
bination gives the turbine components, such as turbine blades, for example, the benefits of the high temper-
ature resistance of ceramics and the structural reliability of the metallic alloy.

TBCs are processed either by air plasma spray (APS) or electron beam vapor deposition (EB-PVD). The
conditions of the working environment are extreme. The thermal cycle generates very high stresses due to
extreme differences in the thermo-mechanical properties of the thermal barrier and the substrate. Eventu-
ally, critical failure of TBCs develops near or along the interface. There are numerous reports on experi-
mental studies of the TBCs’ behavior under various thermal loading conditions, which include failure
development observation. For example, a comprehensive description of these process under different
conditions and extensive reference lists are given by Zhu and Miller (1997, 1998a,b,c), and in some cases
correlations of the experiment and FEM simulations are presented by Zhu et al. (1998). The opera-
tional conditions and the process of failure development in TBCs are complex. The developed computa-
tional models typically address isolated issues and are based on simplified physical systems. This is a
natural trend due to the complexity of the systems and the nature of the problem. Several basic model
developments have led to greater understanding of some aspects of crack growth within the TBCs or along
the interface, and determined their quantitative characteristics. These must be noted; in particular, the key
development work done by Rizk and Erdogan (1989), Hutchinson and Suo (1992), Hutchinson and Lu
(1995), Lee and Erdogan (1998), Shulze and Erdogan (1998), Qian et al. (1998), Evans et al. (2001), Hsueh
(2002).

In the current state of understanding of the process, the critical issue is the interfacial or near interfacial
cracking in the TBCs. In practical terms, one needs to determine the actual fracture mechanics parameters
that initiate internal microcracks and promote their growth during specific thermo-mechanical service cy-
cles. The model development presented here is aimed at obtaining these data on a continuous scale, starting
from failure initiation at the temperature exposed surface and up to the final failure of the TBCs in the form
of complete delamination or spoliation. The expectation is that with the developed model and the data
characterizing the complete process, one will be able to make a reasonable determination of the service life
limitation of the TBCs. The model proposed here is based on consideration of a system of periodically
spaced failure cells under thermal stress.

The developed numerical model takes advantage of the periodic nature of the problem. Thus, a free sur-
face of the coating is represented as an array of dislocations in a manner similar to segments representing
cracks. This technique turned out to be very effective and extremely reliable. Additionally, it bypasses an
alternative path of solving the problem by using the Fourier Transform technique, and then dealing with
numerical inversion of the results, a method used, for example, by Ballarini and Luo (1991).

2. The modeling concept

Shortly after the fabrication and placement in service of TBCs, a granular pattern of crack net forma-
tions on the surface is observed. Due to the high temperature gradients during the fabrication process, usu-
ally a net of surface cracks develops, which gives the appearance of a granular structure of the surface, often
called a mud pie appearance. These surface cracks may be relatively short initially but, as is observed, they
may reach the interface between the ceramic coating and the base metal in a relatively low number of ser-
vice cycles. Typically, these cracks do not propagate through the interface into a substrate, but rather de-
flect and continue to grow along or near the interface. Thus, the main safe service period of TBCs is
primarily dependent on the time, or number of service cycles, required for these cracks to cross the link
holding the individual “grains” attached to the substrate. A two dimensional schematic illustration of this
process is given in Fig. 1, which illustrates the model problem. The initial interface cracks are depicted as a
periodically distributed net of cracks.
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Fig. 1. Initiation and growth of interface cracks.

The modeling approach is based on the described observations. The practical goal is to determine the
safe service time limit for the components equipped with TBCs. Taking a conservative approach, the
aim of the modeling effort is determination of the time required for the cracks to bridge the interfacial link
holding the coating layer. To achieve this, it is necessary to evaluate all crack growth driving parameters as
they develop along the crack path. Determination of the stress intensity factors and the energy release rate
as the crack progresses along the interface, is a necessary step toward service life prediction; this is the main
scope of the present investigation. Here, we develop an analytical-computational relationship between
these parameters and the thermo-mechanical loading parameters during the service cycle.

Although the process is three dimensional, a two dimensional problem could provide sufficient informa-
tion regarding the nature of the process. The average “grain” size, that is, the parameter describing the ini-
tial spacing of the net of surface cracks, determines the size of periodic crack cells in a two-dimensional
cross-section; that is period p, as illustrated in Fig. 1. The initial spacing of the surface cracks depends
on the fabrication process parameters and, possibly, can be controlled by the manufacturing process.

Two alternative crack path directions are illustrated in Fig. 2. Development of the capability to identify a
specific crack path option for a given TBS system is one of the goals of failure model development in this
framework.

The developed model is based on the method of singular integral equations using appropriate periodic
dislocation density functions as influence functions. The elastic fields are generated as a result of temper-
ature or heat flux variation on the free surface of the ceramic coating. The essential steps of the develop-
ment are described in the following sections, where more detailed attention is given to the development of
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Fig. 2. Tllustration of possible crack path trajectories.
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the basic solution for the periodic array of dislocations interacting with the interface. This solution serves as
an influence function for the system of singular integral equations and is given more attention because of
the possible non-unique options of that solution. An important aspect of the presented solution is the load-
ing due to the mismatch of the thermo-mechanical properties of the base and coating materials. The specific
aspects typical for thin coatings are utilized in the analysis and discussed here. These aspects are also dis-
cussed in detail. In the follow up paper, the specifics of thick coatings will be addressed. Only the basic steps
outlining the development of the integral equations and the numerical methods are presented here, because
these techniques are well developed, although representing a free surface as a part of the system of singular
integral equations seems to be a new step. The results illustrating the modeled case are based on the data for
one of the typical TBC systems.

3. Dislocations and bimaterial interface

The stress potentials representing the interaction of a periodic set of dislocations with a biomaterial
interface will be required for the analysis of the model problem. The derivation of these potentials is out-
lined using the general steps applicable to any singularities interacting with an interface separating two half
spaces with different elastic properties. Although one may find a number of similar appearing derivations
for a single dislocation or another singularity, typically, they are not general enough to be used for a peri-
odic array of these defects. This is the reason for some details presented here.

The basic two dimensional elasticity relationships in terms of the complex potentials are, (1):

o1 +on =2(¢'(2) + ¢'(2)),
0 — oy + 2o, = 2(2¢9"(2) + ¥/(2)),

w it = o [k9(2) ~ 29~ 96| n
2u 4
I N ]
Fi+iF; = =i[¢() +20'@) + V()] .
Hear p is the shear modulus, and x = 3 — 4v in case of plane strain or x = (3 — v)/(1 + v) in case of plane
stress consideration. v is the Poisson ratio.

Placing the interface along the x-axis separating the upper and lower half planes of different elastic prop-
erties, use the following notations: for potentials ¢y, Y, with kK = 1 or 2, respectively for the upper and lower
half planes, and use the same subscripts for the corresponding elastic constants. For the stresses, similarly
use the superscript “+” and “—” when necessary.

Placing the dislocations (or other singularities) in the upper half plane, the solution there can be written
as a superposition of singular functions, ¢, ¥ and regular analytic functions ¢;q, ¢ in the upper half
plane.

$1(2) = ¢o(2) + d19(2),  ¥1(2) = Yo(2) + Yy0(2)- (2)

The solution in the lower half plane consists of regular analytic functions only. The equilibrium condi-
tion on the interface, z = x, in terms of these functions is:

on +ion = $o(2) + P(2) + 2910 (2) + o (2) + Po(2) + ho(2) + 29 (2) + Yo (2)

= $3(2) + $3(2) +23(2) + ¥ (2)- (3)

The continuity of the displacement along the interface can be stated equivalently in terms of the conti-

nuity of the derivative of the displacement by x along the interface, z = x, or the conjugate of that deriv-
ative as done here, thus:
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Eqgs. (3) and (4) are valid on the real axis. Each function in these equations represents the boundary value
of a function analytic in the upper or the lower half plane. We rearrange these equations by placing all func-
tions defining the boundary values of analytic functions in the upper half plane to the left in these equa-
tions, and the functions defining the boundary values of analytic functions in the lower half plane to the
right. In doing so, one notes that the boundary value of a function analytic in a half plane specified along
the real axis uniquely defines that function in the respective half plane, and the conjugate of the boundary
value of that function defines an analytic function in the opposite half plane. In both cases the functions
defined by the boundary values on the real axis must vanish as z approaches infinity along the imaginary axis
in the respective half plane. After separating the functions in (3), (4) and applying the principle of analytical
continuation to each side of these equations, one notes that on both sides of these equations, there must be
functions analytic in the entire plane. The physical restrictions limit the values of the resulting functions at
infinity to a constant. Therefore, as a result, one obtains four equations, the first two from Eq. (3), and the
remaining two from Eq. (4). To simplify these equations the following notation is used with the correspond-
ing values of the subscript:

Pi(z) = ¢ (2) + 20 (2) + ¥ (2). ()
Thus, the resulting equations are:
Pio(2) — $5(2) + by (2) = €, (6)
Ps(2) = ¢lo(2) = Pol2) = €, ()
Ki—7 1 Ky—7, .
;1%(2) —EPlo(z) —172%(2) =(, (8)
K1 —7— 1 1 -
—ljlqﬁm(Z) +/71Po(2) —1721’2(2) =Gy )

The standard notation, typically used in two-dimensional elasticity and adopted here, identifies analytic
function ¢, (z) obtained by using the conjugate of the boundary value on x-axis of analytic function ¢, (z).
Both functions are analytic but in opposite half planes. Again, following the argument that the analytic
functions formed from the boundary value on the real axis must vanish at infinity, the constants C; and
C, must be set to zero and an additional restriction must be imposed:

qbf)(z), PO(Z) - 07

(10)
as y — —oo.
Thus, solution of the system of equations (5)—(9) is:
Kily, — Koy =7
Pio(z) = ————¢y(2), 11
ole) =S G (1)
Bl(2) = 2L Py(z), (12)

TR
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)_M2(1+K1)P .

Py(z) = —— : (13)
/ 1 1 /
s =28 ) (14

3.1. Single dislocation in the upper half plane

To obtain a complete solution for the case of a single dislocation, use the stress potentials for a single
dislocation at z=¢, Im ¢ > 0, in an infinite plane as the singular functions in Eqgs. (11)—(14); thus:

/ H b / _ H b < an
Py(z) = m'mv Yo(2) = — = —— — 1 (2), (15)

Hy b—b

e

+ (z = 1)y (2). (16)

The restriction (10) is satisfied and, therefore, Egs. (2), (5), (11)-(16) complete the solution. To obtain the
solution for a dislocation positioned in the lower half plane, Im ¢ < 0, one needs simply to rotate the sub-
scripts 1 and 2 in Egs. (11)—(16).

3.2. Single dislocation on the interface

A special case of a dislocation positioned on the interface can be obtained as a limit case when Im ¢ — 0.
Thus, noting that 7 = ¢ in (15), (16) and using Egs. (2), (11)—~(14), the result is:

/ Jadled} b Kl b
T R A e o e W
In (17) the subscripts j = 1, k = 2 for the upper half plane and j =2, k =1 for the lower half plane. The
validity of the solution as a limit of the solution in the upper or lower half plane may be questioned due to
the singularity on the boundary which was used earlier for the analytical continuation. To prove that the
functions (17) actually represent the solution, one must calculate the total displacement gain over a closed
contour surrounding point z. The resulting displacement should equal b. Additionally, the net force calcu-
lated over a closed contour surrounding ¢ must be zero. On the path of the contour through the upper half
plane functions (17) should be used with j =1, k = 2 and on the remainder path j =2, k = 1. These calcu-
lations were carried out using a circular path and the solution (17) was proven to be correct.

3.3. Periodic distribution of dislocations along a line parallel to the interface in the upper half plane

To obtain a solution for periodically distributed dislocations, one needs only to replace the singular
terms in (15)—(17) by a periodic function which is in effect a superposition of the periodic distribution of
these terms. Eqgs. (11)—(14) remain in effect after replacing functions with subscript 0 by the functions with
subscript p0 given below. In addition a constant could always be added to these functions. This addition is
necessary to enforce the condition (10). Thus, the result for the distribution with period p in the upper half
plane, Im 7> 0, is:

N P S DUVE. N
Bale) = s 2 (cor e -0 ), (18)
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Functions (18)—(20) do not vanish as y — + oo. They correspond to a remote normal stress parallel to
the interface and a rotation, Q:
8b b
+oo __ 1 Hy Q+oo:__2' (21)

2 - )
1 p 14k p

The presence of this remote stress and rotation on one side of the interface is physically acceptable, and
this special feature of the interface problems will be discussed in greater detail below. To eliminate the pres-
ence of these constants the condition of zero of the total cumulative dislocation net over the period must be
used in the formulation of the problem.

To obtain the stress functions for a periodic dislocation array positioned in the lower half plane, Im t <0,
in addition to rotating the subscripts 1 and 2 in Egs. (11), (12), (13), (14) and (18), (19), (20), a negative sign
in front of the constant i must be changed to positive, to enforce condition (10) which now should be sat-
isfied as y — +o0.

3.4. Periodic distribution of dislocations on the interface

Again, using subscripts j = 1, k = 2 for the upper half plane and j = 2, k = 1 for the lower half plane, the
stress functions are:

iy Kk, ﬁ T 2 1) —i
92 = (1 + wjpy) pi (COtp( " l)’

Mty b T :
Pz =—— = —.—|cot—(z—1t¢)—1).
@) (b + 10it,) pl( p( ) )

Solution (22) is formed to enforce condition (10) for the lower half plane. A second version of this solu-
tion can be formed with stress functions vanishing in the upper half plane.

(22)

4. The stress discontinuity at the interface

A stress state along the interface inevitably includes a discontinuity of a normal stress component par-
allel to the interface. General relationships between the stress components and rotation discontinuities are
obtained using relationships (3) and (4) without singular terms:

Ltm o Ldw o 30 =) trop — ity

g = o , 23
Hy ! Uy ! IV 2 ( )
1 1 -
TRge _J Ty T (24)
M H ik

This mandatory presence of the discontinuous stress component creates several options for problems
involving an interface. For example, it is always possible to create a situation when on one side of the inter-
face this stress component is zero. Naturally, any prediction of crack propagation in the vicinity of the
interface under these conditions will be significantly different from the case when a normal stress parallel
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to the interface is set to be zero on the opposite side of the interface. Therefore, any problem in an infinite
plane with an interface and stresses vanishing at infinity on both sides cannot truly represent a practical
case where at least on one side these stresses must be present.

A periodic problem by its nature cannot have well defined stress values at infinity along the direction
defining the period of the problem. In the considered case, the stress values in the vicinity of the interface
along the x-axis vary within the interval defined by the period of the problem. However, one can discuss the
net stress over the period or, equivalently, an average stress within the period. The average normal stress
below the interface created by periodically distributed dislocations positioned in the upper half plane is:

1 =
o, =—Re {3(]52 - /Pzdx + 2iyq’>'2}
p x=0
2 Im(z =
Sl [ y _ m) }Re[bcotﬁ(z—t)] — 0. (25)
D2 VO T ol ) R U MV ) p x=0

Following Eq. (23), the average stress above the interface is zero as well. That, of course, does not ex-
clude stress discontinuity at any point along the interface.

Thus, the only non zero average normal stress component parallel to the interface under the given con-
ditions could be generated by the temperature field. There are three possibilities for the stress state of the
considered system of finite thickness elastic layer on a semi-infinite elastic plane with different elastic and
thermal properties: (a) both the coating and the plane are completely restrained in the direction parallel
to the interface, so no displacement mismatch can develop and the stress differences are only due to the
temperature fields; (b) both the coating and the plane are free to expand in the direction parallel to the
interface and the stress state on both sides should compensate for mismatch of the thermo-mechanical
properties and the temperature distribution; (c) a partial constraint is applied for the thermal expansion
on one side or uneven constraint on both sides. Case (a) at best represents a very special situation and is
not very practical, since it generates only compressive stresses, although it was considered by Rizk and
Erdogan (1989). Case (c) cannot be applied to a semi-infinite plane, and it represents special situations
which cannot be generalized. Case (b) describes most appropriately the situation applicable to thin TBCs.
The base material represented as a semi-infinite plane must be allowed to expand freely as would, generally
speaking, a working component. A thin protective layer cannot constrain the thermal expansion of a much
thicker base material. A simple energy consideration supports this conclusion. Considering a single periodic
segment, one notes that to constrain thermal expansion of a semi-infinite elastic strip, the coating would have
to concentrate an infinite amount of the strain energy per unit length. This is a physically unacceptable situ-
ation, and, therefore, the condition of free thermal expansion of the base material must be employed.

The only stress component generated by the temperature field within the considered plane is a normal
stress parallel to the interface, g;;. With the condition of zero thermal stress in the direction perpendicular
to the interface, this stress is determined as

= 8”3 g'uoc
T l+x 1 1+x

for the plane stress case and in case of plane strain the last term must be multiplied by (1 + v). 7 in (26) is
the temperature increase from the neutral, stress free temperature state, and o, is the coefficient of linear
thermal expansion. The same argument that we used to justify the free expansion of the base material in
the x direction on the plane could be used in the perpendicular direction along the interface. Therefore,
using the plane stress condition for the thermal stress determination seems to be a reasonable choice. By
allowing the base material the free expansion, the coating layer will experience additional stress

011 tT, (26)

o = ——u T, (27)
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where T is the interface temperature increase from the neutral, stress free temperature state. For the prob-
lem in an infinite domain this stress (27) in a thin coating layer should be applied uniformly across the
thickness of the coating. The elastic constants in (27) correspond to the material of the coating, and the
coefficient of thermal expansion corresponds to the base material in the lower half plane. Thus the total
stress in the coating is a superposition of stresses (27) and (26):

8yt o 8t
L+t T4t

+ _ 8t _
o1 = [

o T+ T;. (28)
The temperature distribution is determined by solving the thermal conductivity problem with the bound-
ary conditions relevant to the TBCs service conditions.

5. Temperature distribution

The temperature field considered in this case is due to the changes in the applied temperature at the free
surface of the protective coating. Temperature changes due to elastic deformation are neglected. Thus, a
decoupled system of governing equations is used. The solutions of the thermal conductivity equation with
the boundary conditions at the free surface and the interface determine the temperature field. A heat con-
duction problem which involves cracks directed transversely to the potential heat flux generally needs to
include additional conditions at the crack surfaces. These conditions and their limitations will be discussed
in our follow up paper dealing with thick coatings. In the considered case of thin coatings with implication
of a free thermal expansion of the base material, the effect of the heat flux change due to the presence of
interface cracks on the resulting stress field is not anticipated to be significant. Therefore, a one dimensional
heat conduction problem can be considered. The governing equation is

o, _ 4 O,

ot 7 9y?

with j = 1 for the region occupied by the coating, 0 <y </, and j = 2 for the base material, y <0. f8;in (29)
is the thermal diffusivity coefficient for the corresponding region identified by subscript ;.

There are two typical boundary conditions at the free surface of the coating when the temperature is

prescribed, Problem 1, and when the heat flux is prescribed, Problem 2, at the surface y = 4. Thus, for Pro-
blem 1 we use

(29)

Tl(h,t) =Ts, for ¢t > 0, (30)
and for Problem 2,
oT(h,t
kl%: —qs, for >0, (31)

where gg is the heat flux at the surface.
In both Problems, the boundary conditions at the interface state the continuity of the temperature and
the heat flux

aTl(O,f) 6T2(0,t)

oy Oy
where k; is the thermal conductivity for the corresponding region. The temperature at the point infinitely
remote from the interface remains constant and is equal to the initial temperature of the system,

T1(,O)ZTz(,O):T(—OO,I):To. (33)

T (O,t) = TQ(O, t) and kK s (32)
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The solutions for both problems are obtained by using the Laplace transformation method. The solu-

tions are:
Problem 1:
} + Ty

o0

+ Z(—l)"/l”erfc

n=0

2n+ Dh—y

2y/Bit

. 2n+1h+y

2Bt

v v gn @2n+Dh—y| 2n—1)h+y
= (Ts T()){erfcl2 5 —i—;( 1)'4 [erfc 42\/23_17 ] erfc[72\/ﬁl~t }-l—TO
0<y<h, (34)
nmo=Uk—nﬁu+m;;—WkaQ%%%jﬂf}+n7yso (35)
_pk
with A4 = ;;an n= g;
Problem 2:
00 2
Ti(y,t) = —i—? z:/l"+1 (2\/@exp (— [2n+ Dh+yF +4}3)1}; +] ) —[(2n + D)k + ylerfc <7(2n2+\/1/)7h‘t+y>>
n=0 1
—i—? i A" <2\/@6Xp <— [@nt Dh =y +41ﬂ)1il — ) —[(2n + 1)h — ylerfc (7(21124—\/1%— y)) + T
n=0 1
0<y<h, (36)
> o 2
Tr(y,t) = —(1 +A)%? nZO:A" (2\/37?@&1) <— [@nt DR =} +41ﬁ)flt ] )
—[(2n + 1)k — yylerfc (W)) + Ty, y<O. (37)

The solution for the temperature in the layer of the first problem is given in two forms for easy verification
by inspection. Both solutions can be easily verified and, therefore, the details are omitted.

6. The integral equations

The complete solution for the problem is set in the form of a superposition of three arrays of dislocations
on the intervals identified in Fig. 1, as L, L,, and L. Thus, the stress functions are represented as integrals
(38), (39).

¢ww=[¢w¢mmw+1%wmmmw+[¢ﬁﬁwmw7 (38)

V(1) = /L W (2,6, b1 (1)) do + /L W, (2,1, ba(v)) do + /L V(2 1, bs (1)) do. (39)
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In Egs. (38) and (39) functions with subscript 11 represent complete solutions for a periodic set of dis-
locations in the upper half plane, and functions with subscript 12 represent solutions for a periodic set of
dislocations distributed along the interface. The unknown dislocation densities b(v), b(v), and b3(v) are
found as the solution of the system of singular integral equations of Cauchy type. The integral equations
are derived as statements of traction free conditions on the corresponding intervals representing a free sur-
face and the cracked regions (40).

onL :y=ih, 0<x<p= 0pn+iocpy =0,
onL,:x=0, 0<y<h= oy +iop+o], =0, (40)
onl;:y=0, —a<x<a= oyn+iop=0.

The loading stress in the second equation in set (40) represents the thermal stress which is defined by Eq.
(28). The configuration depicted in Fig. 1. represents the main problem of the considered set. Additional
problems represent gradual failure development beginning with the surface crack development along inter-
val L,, call it Case 1. The crack growth along L, is followed until the crack reaches the interface or branches
out before the interface is reached, Case 2, and Case 3 represents crack branching along the interface as
identified in set (40). In Case 2, interval L; has y > 0.

The resulting system of integral equations, as is typical for these type of problems, must have an addi-
tional set of supplemental conditions. These conditions are usually dictated by the physical restrictions on
the solutions. The unknown dislocation densities on the corresponding intervals determine the singularity
of the stress field in the vicinity of the crack tips or the corners of the elastic region surrounded by the de-
scribed integrals. There is one supplementary condition for each integral equation. On the free surface the
condition of the zero net dislocation density is stated,

/ by(v)do = 0, (41)

Condition (41) is necessary to cancel the remote stress and rotation generated by the periodically distrib-
uted dislocation set, Eq. (21). Because of the periodic nature of the problem the solution with condition (41)
always produces dislocation density with zero values at the ends of the interval L;. The physical condition
to be enforced for the developing surface crack along interval L, is the condition of bounded stress field in
the vicinity of the corner formed by the crack and the free surface, that is

by(z = 0 +ih) = 0. (42)

As the surface crack develops within the protective layer the singularity of the dislocation density at the
crack tip must be proportional to the square root, and when the crack reaches the interface, the singularity
order, A, changes and is determined by the equation

2)\,2(14‘1 — Bd)(l + Bd) — Ad +B(21' + (1 + Bd)(l — Bd) COS(/{H) = 0, (43)
where the following notations are used (Dundur’s parameters)
_ (k1) (o +1)
T+ D)+ (o + 1)
= (s — 1) — py (k2 — 1)
fo(k1 + 1) + py (k2 + 1)

The singularity of the dislocation density is enforced by the numerical scheme used to solve the system of
integral equations. At the point when the crack on L, branches into segments parallel, y; > 0, or along the
interface, y; = 0, an additional physical condition is enforced. That is the condition of bounded stress field
in the vicinity of the new corner formed by the crack on L, and a new crack branch,

(44)
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by(z=0+1y;) =0. (45)

The singularity of the dislocation density at the crack tips of the branched segments is the square root if
the branch is above the interface, and it is

bs(v) ~ (v = a)"(b )", (46)
where a and b represent left and right crack tips, respectively and
=—0.5 —ig,
* 1.8 (47)
p=-0.5+1e
with
1 1-By
=—1 . 4
‘T2 "1+ B, (48)

The numerical scheme of the solution is based on Gauss-Chebyshev quadrature when only square root
singularities are involved, and on Gauss-Jacobean quadrature which is based on Jacobean polynomials on
the segments with other singularity types. The general arrangement of the numerical scheme follows the
scheme described by Rubinstein (1986) and Rubinstein and Choi (1988).

7. Numerical examples and discussion

The numerical examples were computed using the data used in experiments described by Zhu et al.
(1998). The material properties are summarized in Table 1. The definitions of the stress intensity factors
and the energy release rate along the interface used in the computations are consistent with the definitions
introduced by Rice and Sih (1965). Thus, the complex valued stress intensity factors are

K(b) = \/ﬁyfl}(z —b) P[on(z) +ion(z)],

(49)
K(a) = V2nlim(a — z) *[on(z) + io12(2)]
and the energy release rate, G, is
1 1 + K1 1 + K2> ) >
=— + K| +K3). 50
6 (e g 4k (50)

The physical parameters are presented as dimensionless values by using the following definitions

Table 1

Physical and mechanical properties of thermal barrier coating system used in calculation (Zhu et al., 1998)

Materials properties Plasma sprayed ZrO,-8 wt%Y,0; 4120 steel
Young’s modulus, E (GPa) 70.0 180.0
Poisson ratio, v 0.25 0.25
Heat capacity, ¢ (J/kg °K) 582 456.4
Thermal conductivity, k& (W/m °K) 0.9 46.7
Thermal expansion coefficient, o, (107%/°K) 10.8 14.2
Density, p (kg/m®) 5236 7850
Thermal diffusivity, (107 m?/s) 2.953 130.3

Shear modulus, p (GPa) 28.0 72.0
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K Gy = 7G ,  with g9 = —LOHATS or gy = =l
1 b 1 + K1 l -V
S Ogmh———
8 My

where K is the stress intensity factor, G is the energy release rate, E is Young’s modulus, u is shear modulus,
o 1s thermal expansion coefficient, AT} is the temperature increase at the surface (Problem 1), ¢ is surface
heat flux (Problem 2) k is thermal conductivity, and /4 is the thickness of the thermal barrier coating. The
stress in the presented data is normalized by ¢ given in (51).

The service conditions of TBCs typically involve complicated loading patterns which may be based on
variation of surface temperature or surface heat flux. The loading patterns could be in a form of step load-
ing, as in the case of constant temperature environment or an exposure to a constant thermal flux, or as a
cyclic variation of these conditions. The developed solution is capable of handling any of these possibilities
and their combinations. However, to capture the main physical aspect of potential failure development in
TBCs, a limited number of basic examples are presented. The results are arranged in the order of potential
failure development starting with cracks leading from the free surface to the interface.

As was discussed earlier, there are two loading components on the developing cracks in thin protective
coatings. One loading component is proportional to the local temperature increase at each specific location,
and another is the loading stress developed in the direction parallel to the interface due to the mismatch of
thermo-mechanical parameters of the materials separated by the interface. In the case of the considered
material system, initially the thermal stress within the coating is negative, but as the temperature flux
reaches the interface, the interface temperature increases, initiating expansion of the base material, and
the loading stress becomes positive, gradually increasing and becoming a dominant loading component.
In Fig. 3, the development of stress components acting parallel to the interface at three different locations
are presented. The chosen locations to illustrate the effect are at the free surface, in the middle of the coating
layer, and on the coating side at the interface. The data in Fig. 3a was generated under the condition of step
loading of constant temperature at the surface, up to 850 °C, and in Fig. 3b the condition of step loading by
the applied surface heat flux of value of is 5 x 10° W/m? was used. These values were taken from the exper-
iments published by Zhu et al. (1998).

The development of a system of periodically spaced cracks leading through the coating from the free
surface toward the interface is typically observed shortly after components with TBC protection are placed
in service. These cracks are often explained by the presence of residual stresses from the processing of
TBCs. The data plotted in Fig. 4 demonstrates that this does not have to be the case. There is sufficient
driving force acting on these cracks due to the thermal stresses developed in the coating layer during service,

q
— 1
lfvchIklh7 (5 )
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Fig. 3. The normal stress component parallel to the interface versus time. (a) constant temperature is maintained at the surface, (b)
constant flux is maintained at the surface.
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Stress Intensity Factors on Vertical Cracks
of Different Lengths under Step Thermal Loadings
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Fig. 4. Stress intensity factors at the crack growing from the free surface toward the interface.

as demonstrated by the aggressive growth of the stress intensity factor acting on these cracks as they
develop. It is natural that the driving stress intensity factor drops as these cracks approach the interface.
This is due to the anticipated change in singularity which for the chosen material combination is weaker
than the square root, and an additional factor is the free expansion of the base material typical for thin
TBCs. The combination of these factors promotes crack branching in a direction parallel to the interface.

In Fig. 5, an analysis of the stress intensity factors driving the branched crack segments parallel to the
interface and located above the interface is presented. The developed high values of positive Mode II stress
intensity factors suggest that the direction of growth of these cracks during the initial state will be deflected
toward the interface. Crack branching and growth along the interface appears to be more stable, Fig. 6. The
data in Figs. 4-6 were developed using TBC thickness # = 1.5 mm, crack period p = 5 mm, and the surface
temperature 8§50 °C. The crack growth was assumed to take place at a specific time as indicated in the fig-
ures. There is a possibility of some variation of the presented data under different sets of parameters. How-
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Fig. 5. Stress intensity factors acting on a crack branched above the interface, parallel to the interface, L, = 0.75h.
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Fig. 6. Dimensionless stress intensity factors acting on the interface cracks under constant temperature conditions at the coating
surface.

ever, the consistency of the developed patterns suggests the accuracy of the qualitative character of the
developing process.

The pattern of development of the driving stress intensity factor as the crack grows along the interface
indicates that this path is the preferable one. This preference for crack path development takes place until
the crack tip reaches the critical point when crack growth resistance develops. This development takes place
as the magnitude of the Mode I stress intensity factor drops without a change in the applied load. A seg-
ment of the crack path with the developed crack growth resistance is clearly shown for the branched cracks
propagating along the interface, Fig. 6. As the interface cracks are closing the gap within the periodic cells,
crack growth resistance drops and conditions favoring spontaneous failure of the TBC take place. The con-
ditions for possible crack path deflection toward the free surface do not develop in the considered case, but
this possibility exists for different geometrical combinations after the crack tip passes the critical point.
Locations of the critical points and the patterns of the crack growth resistance depend on geometrical com-
binations and the time of crack growth. However, the presence of these characteristics explains the service
time difference between development of the cracks leading toward the interface and the relatively slow time
of crack growth along the interface.

A few sets of numerical examples were generated to represent the stress states developed under various
loading conditions, such as a thermal load applied as constant temperature at the surface; a cyclic temper-
ature load at the surface; constant thermal flux at the surface; and a cyclic thermal flux at the surface. The
analysis of the case of a constant surface temperature plays a guiding role in understanding the cyclic tem-
perature case and evolution of the residual stresses generated by the fabrication process. The case of the
step function loading at the surface, of course, serves as the base for development of any other solution
with a more complex loading pattern. Examples of the variation of the energy release rate at branched
cracks along the interface under a cyclic temperature variation at the surface are shown in Fig. 7. The crack
positions in Fig. 7 are considered as stationary to illustrate the effect of the loading cycle. An important
characteristic to be noted here is the continuous increase of the energy release rate amplitude due to the
time delay in local temperature variation and the change in the variation pattern due to the nature of
the heat conduction process. These effects become more significant with increased exposure to cyclic
thermal loading. There is a noticeable cumulative effect on the crack growth potential due to the cyclic
loading at each crack tip position. This is a detrimental factor for the service life prediction tools
development.
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Fig. 7. Dimensionless energy release rate development on the interface cracks under cyclic temperature variation at the surface.

The analysis of cases involving heat flux prescribed at the surface show similar patterns of behavior of all
major parameters. However, one must note that the heat flux condition at the surface, if not coupled with
the temperature of the surrounding environment, leads to an unreasonable increase of the surface temper-
ature. The coupling with the surrounding environment adds radiation or convection conditions which offset
the otherwise continuous temperature increase. These additional conditions involve an additional set of
variables, which at this time, as we concentrate on the basic aspects of the process, were not introduced.
However, the developed solution is capable of including any possible combination of these conditions into
consideration.

8. Conclusions

A comprehensive analytical-computational model simulating failure progression in thin thermal barrier
coatings has been developed. The model is based on a periodically spaced system of failure sites. The com-
putational model is capable of following a system of surface cracks as they initiate at the surface exposed to
high temperature, develop while crossing the coating layer, and eventually branch off along the coating-
base material interface. As is commonly observed, the simulations demonstrate that the crack branching
along the interface is the most stable crack path development under the described conditions. The numer-
ical simulations of practical cases explain the experimentally observed patterns of failure and the failure
development time relationships between the different segments of the crack growth within the TBCs. While,
as noted, stable crack growth can occur primarily along the interface, of particular significance is the devel-
opment of crack growth resistance during a portion of crack growth along the interface. An accurate pre-
diction of the crack growing segment length and the time it takes to develop under the presence of crack
growth resistance, could be the key to safe service life prediction of the components with TBCs.

The developed results are based on a material system which, as it seems from the elastic stiffness of these
materials, would prevent crack propagation across the interface. However, as was shown, the same effect
will take place in any material combination under the described thermal loading. Thus, the interface tough-
ness and fracture resistance development along the interface are the only factors determining the durability
of the TBCs.

The presented results were developed by considering a periodic system and could not be foreseen from
consideration of a single T-shaped crack.



A.A. Rubinstein, Y. Tang | International Journal of Solids and Structures 42 (2005) 5831-5847 5847

The developed data helps to understand the interface crack driving force evolution as cracks are devel-
oping under thermal loadings in TBCs. The present work is a basic development toward a service life pre-
diction system development for TBCs, and the data developed here could be used as guiding information
for TBC design.

The developed computational model takes advantage of the considered periodic system and is based on a
direct solution, bypassing methods based on integral transformation. Although the aim of the presented
analysis was thermal loading, the developed method can be used for failure modeling under general
loadings.
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